Marker blog

Electric vehicles (EVs) have recently attracted significant attention from the media, politicians, and environmentalists, but do EVs really live up to everything their manufacturers promise? Autogas for America released a new Alternative Fuel Fact Brief on November 25, examining the evidence behind the industry’s claims that EVs are viable, cost-effective and “zero-emission.”

The study questions electric vehicle’s environmental record, considering the greenhouse gases emitted during EV manufacturing. It points out that while EVs have no tailpipe emissions, they charge on U.S. electric grids that draw 50 percent of their power from coal. The Fact Brief also casts doubt on the practicality of EVs for public and private fleets, citing the technology’s struggles with limited carrying capacity, limited driving range and the high cost of their charging infrastructure. The study warns that experts believe an increase in EVs could overburden an already strained electric grid.

While electric vehicles hold many benefits over vehicles running on traditional fuels, the Fact Brief encourages consumers to consider other alternative energies which have more verified environmental and economic benefits and a proven record in American fleets.

Marker blog

According to a new study by psychologists at Germany’s Chemnitz University of Technology, drivers who regularly worry about an electric vehicles’s (EV) battery level don’t maximize their vehicle’s potential. The study found that worried drivers overcharged their EVs on a regular basis. However, the study didn’t address how overcharging can lower the vehicle’s battery life and potentially strain electric grids.

Feeling like you’re about to be stranded because your car runs out of juice is known as “range anxiety” in the EV business. The study at Chemnitz found drivers experienced range anxiety about once per month, and researchers proposed that feeling could worsen if there were no nearby public charging stations. EV manufacturers have long tried to dismiss consumers’ worry about insufficient mileage between charges. Then again, when new battery-electric cars like the Nissan Leaf lose power unexpectedly, range anxiety may be well founded.

The researchers discovered most drivers needlessly recharged their vehicle with 20 percent or more power left in the battery. This finding is important because frequent charging can overwhelm the electric infrastructure, which is already threatened by electric vehicles.

Experts estimate that EVs consume about a third of the power of a house, and warn that adding electric cars to a residential area could overwhelm transformers and even cause blackouts. A public charging network would ease drivers’ nerves, but would add an additional burden to the grid. EVs draw their power from a system that is not prepared to meet the increased demand.

Overcharging can also degrade EV’s battery at a higher rate. Fast charging a Nissan Leaf, for example, can decrease the battery life much faster than slow charging at home. And, replacing a dead EV battery isn’t cheap: a recent article from the UK states that a new battery pack could cost over $30,000.

With the harm overcharging can ultimately bring to their vehicles and the electric grid infrastructure, EV drivers unfortunately have more to worry about than just their range.

Image by Salvatore Vuono

If you liked this post, you might also like these posts:
Marker blog

nissanleafIf you fast charge your Nissan Leaf more than once per week, you could see a decrease in your vehicle battery life by several years.

Mark Perry, Nissan’s director of product planning, said, “If fast charging is the primary way that a Leaf owner recharges, then the gradual capacity loss is about 10 percent more than 220-volt charging. In other words, it will bring the capacity…closer to 70 percent after 10 years.”

The same article also states that an average Lithium-Ion battery cell in an electric cycle has about 1,000 full cycles before it is classified as reaching its “end of life” (EOL).  If you fast charge your Leaf more than twice a week, however, the battery’s EOL could arrive much more quickly. Since the lifespan of the battery is determined by a fixed number of charge cycles, more frequent charging effectively ‘uses up’ battery capabilities more quickly.

According to the industry, a battery has reached its EOL after it has lost 20 percent of its original storage capacity, meaning a charging capacity of 80 percent, which occurs in about 10 years without frequently fast charging an EV.

With all the expenses of electric vehicles (and they seem to be making them more expensive over time), the cost of a replacement battery brings yet another cost into the mix if you want your EV to keep running. In fact, according to a recent British article, it could cost you up to £19,000 to purchase a new battery pack, which would be about $30,645 in U.S. dollars. Indeed, Nissan has stated the production costs for a replacement Leaf battery are around $18,000 – but has declined to say on its website how much a replacement battery would cost the consumer.

And it seems other automotive buffs are questioning the viability of the Leaf’s battery. As Daryl Siry wrote in a blog for Wired.com:

“It also appears that Nissan has cut corners on the most critical aspects of electric vehicle technology – the battery pack.”

Photo Source: Autogeeze.com

If you liked this post, you might also like these posts:
Marker blog
Posted by admin at 5:08PM on 6/24/2011 with tags: , , , , , , ,

A recent British study has questioned the environmental benefits of plug-in electric vehicles (PEVs) and has gone so far as to claim they may be dirtier than gasoline vehicles. While this statement may baffle those who have seen automakers’ touting “zero emissions” EVs (view our June 2nd post about Nissan), the study goes on to say that nearly half of an electric vehicle’s emissions are produced during the manufacturing process, before the car has ever been driven. EVs require multiple batteries to operate – batteries that greatly increase the amount of energy needed and pollution created by the factory.

Of course, the other portion of EV emissions is created when the vehicle’s battery is charging. Since much of the world’s electricity is sourced from dirty sources such as coal, the EV’s emissions are simply being transferred from the road to the area around the power plant.

One place this study’s findings might be (indirectly) tested is in Australia where PEV manufacturer Tesla is attempting to break the national record for the longest road trip by an electric vehicle with its all-electric “Roadster.” It will be recharged along the way with renewable energy sources such as solar, hydro and wind to illustrate the low emissions capabilities of the vehicle. Critics of the project, such as automotive expert and editor of New Zealand’s sardonic Dog and Lemon Guide Clive Matthew-Wilson, say that the car isn’t as environmentally conscious as Tesla would have you believe. “Burning coal to make electricity to power an electric car creates more pollution than if you simply powered the same vehicle using petrol [gasoline],” Matthew-Wilson said.

This study was among the first to complete an analysis of  the energy-intensity of producing batteries when calculating EV life-cycle emissions. Given that this and other recent studies have targeted EVs’ green credentials lately, shifting from gasoline to mass production of EVs may be too ambitious for now – which only furthers the case for using American-made, clean-burning alternative fuels like autogas and natural gas.

To make the way for a true clean energy future with PEVs, America would need to overhaul its energy grids and greatly expand renewable energy use. The disparity between EVs’ actual contribution to lowering emissions and EV proponents’ dream of what it could be does not mean we’re stuck with gasoline in 2011– autogas is right here, right now.